NEW METHODS AND REAGENTS IN ORGANIC SYNTHESIS. 62¹ TRIMETHYLSILYLDIAZOMETHANE: A CONVENIENT REAGENT FOR THE PREPARATION OF ACYLSILANES

Toyohiko Aoyama^{*} and Takayuki Shioiri^{*}

Faculty of Pharmaceutical Sciences, Nagoya City University Tanabe-dori, Mizuho-ku, Nagoya 467, Japan

The lithium salt of trimethylsilyldiazomethane smoothly reacts with alkyl halides to give α -trimethylsilyldiazoalkanes which are easily oxidized with m-chloroperbenzoic acid (m-CPBA), giving the corresponding acylsilanes (α -ketosilanes) in good yields.

Acylsilanes (α -ketosilanes) are an interesting class of compounds as intermediates in organic synthesis.² Although a number of methods for the preparation of acylsilanes have been reported,² only a few show useful flexibility. Recent report³ involving the use of methoxy(phenylthio)trialkylsilylmethane has prompted us to record our results.

Our continued interest on the use of trimethylsilyldiazomethane $(TMSCHN_2, (CH_3)_3SiCHN_2)$ as a reagent for introducing a C₁-unit⁴ has revealed that acylsilanes can be very easily prepared in 2 steps from alkyl halides by alkylation of the lithium salt of TMSCHN₂, followed by oxidation with m-chloroperbenzoic acid (m-CPBA).

We have found that lithium trimethylsilyldiazomethane (1), prepared from $TMSCHN_2$ and nbutyllithium, smoothly reacts with alkyl halides in tetrahydrofuran to give α -trimethylsilyldiazoalkanes (2). Conversion of the resulting 2 to acylsilanes (3) is easily achieved by the oxidation with m-CPBA in a two-phase solvent system of benzene and phosphate buffer (pH 7.6).

The results are summarized in Table. Alkylation of 1 with various alkyl halides as well as the oxidation of 2 with m-CPBA smoothly proceeds under mild reaction conditions. The double bond of 2e is intact under the oxidation conditions. Phosphate buffer is essential to conduct the reaction cleanly since a complicated mixture is formed without the buffer. Although 31% aqueous hydrogen peroxide in dioxane can also be used for the oxidation, a longer reaction time (for 2b; room temperature, 23 h) is required for the completion of the reaction.

2006

The present method using commercially available trimethylsilyldiazomethane is simple and easy to conduct, and will provide an added flexibility in the acylsilane synthesis.

Product No.	RX	Yield(%) ^{a,b} of 2∕	bp(°C)/mmHg	Yield(%) ^{c,d} of 3	bp(°C)/mmHg
b ≁	PhCH ₂ CH ₂ Br	87	50-55/0.15	65	50-55/0.01
c ⋧	CH ₃ (CH ₂) ₉ Br	65	70-75/0.15	62	70-75/0 . 15
d ≁	СН ₃ (СН ₂) ₃ СНСН ₂ I I СН ₃ СН ₂	79	50-55/0.1	71	40-45/0.04
e ~	CH ₂ =CH(CH ₂) ₉ I	72	80-85/0.08	63 ^e	70-75/0.01
f	PhO(CH ₂) ₃ Br	62	80-85/0.03	66 ^f	75-80/0.02
g ~	С _S J _{CH2} CH2-	65	65-70/0 . 15	61 ^g	60-65/0.01
h ∼	сн ₃ (сн ₂) ₅ сні І сн ₃	_		31 ^{h, i}	50-55/0 . 05

Table Conversion of Alkyl Halides to Acylsilanes (3) using TMSCHN₂

a) A solution of RX (5 mmol) in THF (5 ml) was added dropwise to a solution of 1 (prepared from TMSCHN₂⁵ (6 mmol) and n-BuLi (6 mmol) in THF (25 ml)) at -70°C under argon and the mixture was stirred at $-50 \sim -20°$ C for $4.5 \sim 7$ h. b) Isolated yield after a Kugelrohr distillation. c) Unless otherwise stated, a solution of 2 (2 mmol) in benzene (6 ml) was added dropwise to a mixture of m-CPBA (2.1 mmol), benzene (14 ml), and 0.1M phosphate buffer (pH 7.6, 30 ml) at $5 \sim 10°$ C, and the mixture was stirred at $5 \sim 10°$ C for 5 min, then at room temperature for 1 h. d) Isolated yield after silica gel column chromatography followed by distillation. e) The reaction was carried out at 0°C for 5 min. f) The reaction was carried out at $6 \sim 10°$ C for 5 min, then at room temperature out at $6 \sim 10°$ C for 5 min, then starting halide.

References and Notes

- For Part 61, see S. Kato, Y. Kondo, T. Sugiura, Y. Hamada, and T. Shioiri, "Peptide Chemistry 1985," ed. by Y. Kiso, Protein Research Foundation, Osaka, in press (1986).
- E.W. Colvin, "Silicon in Organic Synthesis," Butterworths, London, 1981, Chapter 17;
 W.P.Weber, "Silicon Reagents for Organic Synthesis," Springer-Verlag, Berlin, 1983, Chapter 16; D.J. Ager, <u>Chem. Soc. Rev.</u>, 11, 493 (1982); S. Murai, H. Ryu, J. Iriguchi, and N. Sonoda, <u>J. Am. Chem. Soc.</u>, 106, 2440 (1984).
- 3) T. Mandai, H. Arase, J. Otera, and M. Kawada, <u>Tetrahedron Lett.</u>, 26, 2675 (1985).
- T. Aoyama, S. Terasawa, K. Sudo, and T. Shioiri, <u>Chem. Pharm. Bull</u>., 32, 3759 (1984). For a review, see T. Shioiri and T. Aoyama, <u>J. Synth. Org. Chem. Japan</u>, 44, 149 (1986).
- 5) S. Mori, I. Sakai, T. Aoyama, and T. Shioiri, <u>Chem. Pharm. Bull.</u>, <u>30</u>, 3380 (1982).

(Received in Japan 20 February 1986)